Exceeding Tilt Thresholds in a Changing Climate

  • 1.

    Lenton, TM et al. Tilt elements in the earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008). This paper was the first to identify potential tilting elements in the climate system.

    ADS CAS Article Google Scholar

  • 2.

    Lenton, TM Environmental Tips. Annu. Rev. Environment. Resource. 38, 1–29 (2013).

    Google Scholar ADS Article

  • 3.

    Scheffer, M. et al. Early warning signals for critical transitions. Earth 461, 53–59 (2009).

    ADS CAS Article Google Scholar

  • 4.

    Lenton, TM Early Climate Point Warning. Wet. Climb. Chang. 1, 201–209 (2011).

    Google Scholar ADS Article

  • 5.

    Dakos, V. et al. Delay as an early warning signal for sudden climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008). This paper provides evidence of tipping points in paleoclimate records.

    ADS CAS Article Google Scholar

  • 6.

    Ditlevsen, PD & Johnsen, SJ Tilting points: early warning and wishful thinking. Geophys. Res. Light. 37, https://doi.org/10.1029/2010GL044486 (2010).

  • 7.

    Drijfhout, S. et al. Catalog of sudden shifts in the Intergovernmental Panel on Climate Change. Proc. Natl Acad. Sci. USA 112, E5777 – E5786 (2015). This study illustrates that tipping points are found in future projections with complex earth system models.

    Google Scholar CAS Article

  • 8.

    Nobre, CA & Borma, LDS ‘Tipping points’ for the Amazon forest. Curr. Opin. Environment. Maintain. 1, 28–36 (2009).

    Google Scholar Article

  • 9.

    Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Wet. Climb. Chang. 2, 429–432 (2012).

    Google Scholar ADS Article

  • 10.

    Schellnhuber, HJ, Rahmstorf, S. & Winkelmann, R. Why the right climate goal was agreed in Paris. Wet. Climb. Chang. 6, 649–653 (2016).

    Google Scholar ADS Article

  • 11.

    Steffen, W. et al. Orbits of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018). This question paper estimates the tipping point thresholds (we use the central estimates here).

    ADS CAS Article Google Scholar

  • 12.

    Kriegler, E., Hall, JW, Held, H., Dawson, R. & Schellnhuber, HJ Unlikely probability assessment of tipping points in the climate system. Proc. Natl Acad. Sci. USA 106, 5041–5046 (2009).

    ADS CAS Article Google Scholar

  • 13.

    Lenton, TM et al. Tilt points for climate – too risky to bet against. Earth 575, 592–595 (2019).

    ADS CAS Article Google Scholar

  • 14.

    United Nations Framework Convention on Climate Change Adoption of the Paris Agreement. Proposal by the President https://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf (UNFCCC, 2015).

  • 15.

    Raftery, AE, Zimmer, A., Frierson, DM, Startz, R. & Liu, P. Less than 2 ° C heating at 2100 unlikely. Wet. Climb. Chang. 7, 637−641 (2017).

    ADS CAS Article Google Scholar

  • 16.

    Tong, D. et al. Dedicated emissions from existing energy infrastructure jeopardize the 1.5 ° C climate goal. Earth 572, 373–377 (2019).

    Google Scholar CAS Article

  • 17.

    Alkhayuon, H., Ashwin, P., Jackson, LC, Quinn, C. & Wood, RA Basin bifurcations, oscillating instability, and rate-induced thresholds for Atlantic meridional reversal circulation in a global oceanic boxing model. Proc. R. Soc. London. A 475, 20190051 (2019).

    ADS Google Scholar

  • 18.

    Jackson, L. & Wood, R. Hysteresis and resilience of the AMOC in a vortex-permissible GCM. Geophys. Res. Light. 45, 8547–8556 (2018).

    Google Scholar ADS Article

  • 19.

    Kaszás, B., Haszpra, T. & Herein, M. The snowball Earth transition in a climate model with floating parameters: distribution of the snapshot lure. Chaos 29, 113102 (2019).

    ADS MathSciNet Google Scholar Article

  • 20.

    Ritchie, P., Karabacak, Ö. & Sieber, J. Inverse square law between time and amplitude for exceeding tilt thresholds. Proc. R. Soc. London. A 475, 20180504 (2019). This study describes the mathematical theory for how much and how long a tipping point threshold can be exceeded without causing tipping.

    ADS MathSciNet Google Scholar

  • 21.

    O’Keeffe, PE & Wieczorek, S. Typical phenomena and points of no return in ecosystems: beyond classical bifurcations. SIAM J. Application Dyn. Syst. 19, 2371–2402 (2020).

    Google Scholar MathSciNet Article

  • 22.

    Pachauri, RK et al. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Review Report of the Intergovernmental Panel on Climate Change https://epic.awi.de/id/eprint/37530/ (IPCC, 2014).

  • 23.

    Cox, PM et al. The Amazon forest is among the climate-carbon cycle projections for the 21st century. Theory. Application Climate toll. 78, 137–156 (2004).

    Google Scholar ADS Article

  • 24.

    Zickfeld, K., Knopf, B., Petoukhov, V. & Schellnhuber, HJ Is the Indian summer monsoon stable against global change? Geophys. Res. Light. 32, https://doi.org/10.1029/2005GL022771 (2005).

  • 25.

    Walker, G. The Tilt Point of the Iceberg. Earth 441, 802–805 (2006).

    ADS CAS Article Google Scholar

  • 26.

    Stocker, TF & Wright, DG Rapid transitions of deep ocean circulation induced by changes in surface water currents. Earth 351, 729–732 (1991).

    Google Scholar ADS Article

  • 27.

    Hughes, TP, Linares, C., Dakos, V., Van De Leemput, IA & Van Nes, EH. Tendense Ecol. Evol. 28, 149–155 (2013).

    Google Scholar Article

  • 28.

    Lucarini, V. & Bódai, T. Transitions over melancholy conditions in a climate model: reconciling the deterministic and stochastic views. Fis. Ds Lett. 122, 158701 (2019).

    ADS CAS Article Google Scholar

  • 29.

    Wernecke, H., Sándor, B. & Gros, C. Metadynamics of attractors in terms of target points in slow-velocity systems: adiabatic versus symmetry-protected flow in a repetitive neural network. J. Phys. Community. 2, 095008 (2018).

    Google Scholar Article

  • 30.

    Medeiros, ES, Caldas, IL, Baptista, MS & Feudel, U. Trapping phenomenon attenuates the effects of tipping points for limit cycles. Sci. Rep. 7, 42351 (2017).

    ADS CAS Article Google Scholar

  • 31.

    Huntingford, C. et al. Flexible parameter-sparse global temperature profiles stabilizing at 1.5 and 2.0 ° C. Earth. Syst. Dinam. 8, 617−626 (2017). This article defines the temperature exceedance profiles used in this study.

    Google Scholar ADS Article

  • 32.

    Cessi, P. A simple boxing model of stochastically forced thermohaline flow. J. Phys. Oceanogr. 24, 1911–1920 (1994).

    Google Scholar ADS Article

  • 33.

    Dijkstra, HA Nonlinear climate dynamics (Cambridge Univ. Press, 2013).

  • 34.

    Stommel, H. Thermohaline convection with two stable flow regimes. Tell us 13, 224–230 (1961).

    Google Scholar ADS Article

  • 35.

    Herald, CM, Kurita, S. & Telyakovskiy, AS Simple climate models to illustrate how bifurcations can change equilibrium and stability. J. Contemp. Water Res. Educate. 152, 14–21 (2013).

    Google Scholar Article

  • 36.

    Dekker, MM, Von Der Heydt, AS & Dijkstra, HA Cascading transitions in the climate system. Earth Syst. Dinam. 9, 1243–1260 (2018).

    Google Scholar ADS Article

  • 37.

    Wunderling, N., Donges, JF, Kurths, J. & Winkelmann, R. Variable seesaw elements increase the risk of climate domino effects under global warming. Earth Syst. Dinam. Discuss. 1–21, https://doi.org/10.5194/esd-2020-18 (2020).

  • 38.

    Levermann, A., Schewe, J., Petoukhov, V. & Held, H. Basic mechanism for abrupt monsoon transitions. Proc. Natl Acad. Sci. USA 106, 20572–20577 (2009).

    ADS CAS Article Google Scholar

  • 39.

    North, GR The small ice cap instability in diffuse climate models. J. Atmos. Sci. 41, 3390–3395 (1984).

    Google Scholar ADS Article

  • Source