Shelby, RA, Smith, DR & Schultz, S. Experimental verification of a negative refractive index. Science 292, 77–79 (2001).
Li, J. & Chan, CT Double-negative acoustic metamaterial. Fis. Ds E 70, 055602 (2004).
Clausen, A., Wang, F., Jensen, JS, Sigmund, O. & Lewis, JA Topology optimized architectures with a programmable Poisson ratio over large distortions. Adv. Mater. 27, 5523–5527 (2015).
Konaković-Luković, M., Panetta, J., Crane, K. & Pauly, M. Rapid deployment of curved surfaces via programmable tools. ACM Trans. Graph. 37, 1–13 (2018).
Coulais, C., Teomy, E., de Reus, K., Shokef, Y. & van Hecke, M. Combinatorial design of textured mechanical metamaterials. Earth 535, 529–532 (2016).
Guseinov, R., McMahan, C., Pérez, J., Daraio, C. & Bickel, B. Programming temporary morphing of self-propelled shells. Wet. Community. 11, 237 (2020).
Zheng, X. et al. Ultralight, ultra-rigid mechanical metamaterials. Science 344, 1373–1377 (2014).
Meza, LR et al. Resilient 3D hierarchical architecture metamaterials. Proc. Natl Acad. Sci. USA 112, 11502–11507 (2015).
Shan, S. et al. Multistable architectural material for capturing elastic stress energy. Adv. Mater. 27, 4296–4301 (2015).
Raney, JR et al. Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl Acad. Sci. USA 113, 9722–9727 (2016).
Kim, Y., Yuk, H., Zhao, R., Chester, SA & Zhao, X. Print ferromagnetic domains for unbound, fast-transforming soft materials. Earth 558, 274–279 (2018).
Jin, L., Khajehtourian, R., Mueller, J., Rafsanjani, A. & Tournat, V. Conducted transition waves in multistable mechanical metamaterials. Proc. Natl Acad. Sci. USA 117, 2319–2325 (2020).
Wang, P., Casadei, F., Shan, S., Weaver, JC & Bertoldi, K. The use of nodules to design tunable local resonant acoustic metamaterials. Fis. Ds Lett. 113, 014301 (2014).
Florijn, B., Coulais, C. & Van Hecke, M. Programmable mechanical metamaterials. Fis. Ds Lett. 113, 175503 (2014).
Silverberg, JL et al. The use of origami design principles to fold reprogrammable mechanical metamaterial. Science 345, 647–650 (2014).
Sussman, DM et al. Algorithmic lattice kirigami: a route to pluripotent materials. Proc. Natl Acad. Sci. USA 112, 7449–7453 (2015).
Wang, Y. et al. Architectural grids with adjustable energy absorption. Extreme. Mech. Light. 33, 100557 (2019).
Medina, E., Farrell, PE, Bertoldi, K. & Rycroft, CH Navigate the landscape of nonlinear mechanical metamaterials for advanced programmability. Fis. Ds B 101, 064101 (2020).
Novelino, LS, Ze, Q., Wu, S., Paulino, GH & Zhao, R. Unrestricted control of functional origami micro-robots with distributed operation. Proc. Natl Acad. Sci. USA 117, 24096–24101 (2020).
Overvelde, JTB, Kloek, T., D’haen, JJA & Bertoldi, K. Strengthening the response of soft drives using puncture instabilities. Proc. Natl Acad. Sci. USA 112, 10863–10868 (2015).
Chen, T., Mueller, J. & Shea, K. Integrated design and simulation of tunable, multi-state structures monolithically fabricated with multi-material 3D printing. Sci. Rep. 7, 45671 (2017).
Bilal, OR, Foehr, A. & Daraio, C. Reprogrammable phononic metaflacks. Adv. Mater. 29, 1700628 (2017).
Faber, JA, Arrieta, AF & Studart, AR Bioinspired spring origami. Science 359, 1386–1391 (2018).
Le Ferrand, H., Studart, AR & Arrieta, AF Filtered mechanical sensing using snake means with embedded mechanoelectric transduction. ACS Nano 13, 4752–4760 (2019).
Yasuda, H., Korpas, L. & Raney, J. Transition waves and formation of domain walls in multistable mechanical metamaterials. Fis. Rev. Appl. 13, 054067 (2020).
Sobota, PM & Seffen, KA Bistable polar orthotropic shallow shells. R. Soc. Open Sci. 6, 190888 (2019).
Jia, Z. & Wang, L. Instability-activated triple negative mechanical metamaterial. Fis. Ds Appl. 12, 024040 (2019).
Zheludev, NI & Kivshar, YS From Metamaterials to Meta Devices. Wet. Mater. 11, 917–924 (2012).
Silva, A. et al. Perform mathematical operations with metamaterials. Science 343, 160–163 (2014).
Cui, TJ, Qi, MQ, Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials, and programmable metamaterials. Light scientist. Application. 3, e218 (2014).
Della Giovampaola, C. & Engheta, N. Digital metamaterial. Wet. Mater. 13, 1115–1121 (2014).
Oliveri, G. & Overvelde, JTB Inverse design of mechanical metamaterials that bend. Adv. Funct. Mater. 30, 1909033 (2020).
Bauhofer, AA et al. Utilizes photochemical shrinkage in direct laser writing to reshape polymer sheets. Adv. Mater. 29, 1703024 (2017).
Kotikian, A., Truby, RL, Boley, JW, White, TJ & Lewis, JA 3D printing of liquid crystal elastomeric drives with spatially programmed nematic sequence. Adv. Mater. 30, 1706164 (2018).
Skylar-Scott, MA, Mueller, J., Visser, CW & Lewis, JA Voxelated soft material via multimaterial multinozzle 3D printing. Earth 575, 330–335 (2019).
Travel, PM, Heinrich, HM & Van Hecke, M. Designer case: a perspective. Extreme. Mech. Light. 5, 25–29 (2015)
Ogden, RW Large deformation isotropic elasticity – on the correlation of theory and experiment for uncompressible rubbery solids. Rubber Chem. Technol. 46, 398–416 (1973).
Ogden, RW & Roxburgh, DG A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R. Soc. A 455, 2861–2877 (1999).
Mises, RV About the stability problems of the elasticity theory. Z. Angew. Mathematics. Mech. 3, 406–422 (1923).
Schneider, CA, Rasband, WS & Eliceiri, KW NIH Image to ImageJ: 25 years of image analysis. Wet. Methods 9, 671–675 (2012).
Griffiths, DJ Introduction to electrodynamics 3rd ed (Prentice-Hall, 1999).
Cedolin, L. et al. Stability of structures: elastic, inelastic, fracture and damage theories (World Scientific, 2010).