A quantum enhanced search for dark matter actions

  • 1.

    Slusher, RE, Hollberg, NB, Yurke, B., Mertz, JC & Valley, JF Observation of depressed conditions generated by four-wave mixing in an optical cavity. Fis. Ds Lett. 55, 2409–2412 (1985).

    ADS CAS Article Google Scholar

  • 2.

    Tse, M. et al. Quantum-enhanced advanced LIGO detectors in the era of gravity wave astronomy. Fis. Ds Lett. 123, 231107 (2019).

    ADS CAS Article Google Scholar

  • 3.

    Brubaker, BM et al. First results of a microwave cavity action search at 24 μeV. Fis. Ds Lett. 118, 061302 (2017).

    ADS CAS Article Google Scholar

  • 4.

    Peccei, RD & Quinn, HR CP preservation in the presence of sham particles. Fis. Ds Lett. 38, 1440–1443 (1977).

    ADS CAS Article Google Scholar

  • 5.

    Preskill, J., Wise, MB & Wilczek, F. Cosmology of the invisible action. Fis. Easy. B 120, 127–132 (1983).

    Google Scholar ADS Article

  • 6.

    Dine, M. & Fischler, W. The not-so-harmless action. Fis. Easy. B 120, 137–141 (1983).

    Google Scholar ADS Article

  • 7.

    Abbott, L. & Sikivie, P. A cosmological link to the invisible action. Fis. Easy. B 120, 133–136 (1983).

    Google Scholar ADS Article

  • 8.

    Braine, T. et al. Extensive search for the invisible action with the action-dark matter experiment. Fis. Ds Lett. 124, 101303 (2020).

    ADS CAS Article Google Scholar

  • 9.

    Malnou, M. et al. Pressure vacuum is used to accelerate the search for a weak classical signal. Fis. Ds X 9, 021023 (2019).

    CAS Google Scholar

  • 10.

    Buschmann, M., Foster, JW & Safdi, BR Early universe simulations of the cosmological action. Fis. Ds Lett. 124, 161103 (2020).

    ADS CAS Article Google Scholar

  • 11.

    Klaer, VB & Moore, GD The dark-matter action mass. J. Cosmol. Astropart. Fish. 2017, 049 (2017).

    Google Scholar Article

  • 12.

    Ade, PA et al. Planck 2015 Results – XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

    Google Scholar Article

  • 13.

    Bertone, G. & Tait, TMP A new era in the search for dark matter. Nature 562, 51–56 (2018).

    ADS CAS Article Google Scholar

  • 14.

    Ouellet, JL et al. First results of ABRACADABRA-10 cm: a search for sub-μev action dark matter. Fis. Ds Lett. 122, 121802 (2019).

    ADS CAS Article Google Scholar

  • 15.

    Majorovits, B. et al. Madmax: a new way to detect dark matter. J. Phys. Conf. Ser. 1342, 012098 (2020).

    Google Scholar Article

  • 16.

    Arvanitaki, A. & Geraci, AA Resonant detection of action-mediated forces with nuclear magnetic resonance. Fis. Ds Lett. 113, 161801 (2014).

    Google Scholar ADS Article

  • 17.

    Garcon, A. et al. The cosmic action-spin-precession experiment (CASPEr): a search for dark matter with nuclear magnetic resonance. Quantum Sci. Technol 3, 014008 (2018).

    Google Scholar ADS Article

  • 18.

    Zhong, L. et al. Results of phase 1 of the HAYSTAC microwave cavity action experiment. Fis. Ds 97, 092001 (2018).

    ADS CAS Article Google Scholar

  • 19.

    Lee, S., Ahn, S., Choi, J., Ko, BR & Semertzidis, YK Axion dark matter seeks about 6.7 μeV. Fis. Ds Lett. 124, 101802 (2020).

    ADS CAS Article Google Scholar

  • 20.

    Sikivie, P. Experimental tests of the “invisible” action. Fis. Ds Lett. 51, 1415–1417 (1983).

    ADS CAS Article Google Scholar

  • 21.

    Rapidis, NM, Lewis, SM & van Bibber, K. Characterization of the HAYSTAC action dark matter search cavity with microwave measurement and simulation techniques. Ds Sci. Instrument. 90, 024706 (2019).

    Google Scholar ADS Article

  • 22.

    Caves, CM, Thorne, KS, Drever, RWP, Sandberg, VD & Zimmermann, M. On the measurement of a weak classical force coupled to a quantum mechanical oscillator. I. Principles. Ds Mod. Fish. 52, 341–392 (1980).

    Google Scholar ADS Article

  • 23.

    Palken, DA et al. Improved analysis framework for action-seeking dark matter. Fis. Ds 101, 123011 (2020).

    ADS CAS Article Google Scholar

  • 24.

    Kim, JE Poor interaction singlet and strong CP invariance. Fis. Ds Lett. 43, 103–107 (1979).

    ADS CAS Article Google Scholar

  • 25.

    Shifman, MA, Vainshtein, AI & Zakharov, VI Can ensure confinement of course CP immutability of strong interactions? Core. Fis. B 166, 493–506 (1980).

    Google Scholar ADS Article

  • 26.

    Gorghetto, M., Hardy, E. & Villadoro, G. Axions from strings: the attractive solution. J. High Energy Fish. 2018, 151 (2018).

    Google Scholar Article

  • 27.

    Yamamoto, T. et al. Flood-driven Josephson parametric amplifier. Application Fis. Light. 93, 042510 (2008).

    Google Scholar ADS Article

  • 28.

    Primakoff, H. Photoproduction of neutral mesons in nuclear electric fields and the average life of the neutral meson. Fis. Ds. 81, 899 (1951).

    ADS CAS Article Google Scholar

  • 29.

    Al Kenany, S. et al. Design and operational experience of a microwave cavity action detector for the 20 – 100 μeV range. Core. Instrum. Methods Fis. Res. A 854, 11–24 (2017).

    ADS CAS Article Google Scholar

  • 30.

    Caves, CM Quantum limits on noise in linear amplifiers. Fis. Ds 26, 1817–1839 (1982).

    Google Scholar ADS Article

  • 31.

    Malnou, M., Palken, DA, Vale, LR, Hilton, GC & Lehnert, KW Optimal operation of a Josephson parametric amplifier for vacuum pressure. Fis. Ds Appl. 9, 044023 (2018).

    ADS CAS Article Google Scholar

  • 32.

    Brubaker, BM, Zhong, L., Lamoreaux, SK, Lehnert, KW & van Bibber, KA HAYSTAC action search analysis procedure. Fis. Ds 96, 123008 (2017).

    Google Scholar ADS Article

  • 33.

    Burkhart, LD et al. Error-detected state transfer and entanglement in a superconducting quantum network. Preview at https://arxiv.org/abs/2004.06168 (2020).

  • 34.

    Braunstein, SL & van Loock, P. Quantum information with continuous variables. Ds Mod. Fish. 77, 513–577 (2005).

    ADS MathSciNet Google Scholar Article

  • 35.

    Tanabashi, M. et al. Revision of particle physics. Fis. Ds 98, 030001 (2018).

    Google Scholar ADS Article

  • 36.

    Di Luzio, L., Giannotti, M., Nardi, E. & Visinelli, L. The landscape of QCD action models. Fis. Rep. 870, 1–117 (2020).

    ADS MathSciNet Google Scholar Article

  • 37.

    Dine, M., Fischler, W. & Srednicki, M. A simple solution to the strong CP problem with a harmless action. Fis. Easy. B 104, 199–202 (1981).

    Google Scholar ADS Article

  • 38.

    Zhitnitsky, AR On possible suppression of action-hadron interactions. Sov. J. Nucl. Fish. 31, 260 (1980).

    Google Scholar

  • 39.

    Palken, DA Improving the scan rate for Axion Dark Matter: quantum noise evasion and maximum informative analysis. PhD thesis, Univ. of Colorado Boulder (2020).

  • Source